Chemistry 101 Laboratory Fall 2005 - 2006

Lecture 10 Identifying the Mystery Metal

 To conduct some tests, that are accompanied by a visual change, on few common metal ions.

• To identify unknown metal ions.

Theoretical Background

Metal ions can be easily identified; most metal ions undergo characteristic reactions with certain solutions. Such reactions include production of a gas, color change, or formation of a precipitate (visual change).

Experiment Overview

- conduct some tests with few common metal ions to see what colored precipitates they form with three solutions.
- make a chart of these reactions for easy reference.
- identify a "mystery" metal ion by treating it and comparing the results with the chart.

Experiment

 Metal ions used: Al³⁺, Cu²⁺, Fe²⁺, Fe³⁺, Pb²⁺ and Ag⁺⁻

Use available solutions of soluble compounds that contain the above ions.

Reagents needed:

Ammonium sulfide, $(NH_4)_2S$ Ammonium carbonate, $(NH_4)_2CO_3$ Potassium iodide, KI

• Test each of the metal ions with each of the three reagents and record your observations. Write the corresponding chemical reactions.

Use a spot plate and run the reactions according to the following chart

	Ammonium Sulfide (S) ⁻²	Ammonium carbonate $(CO_3)^{-2}$	Potassium Iodide (I ⁻)
Aluminum (Al ³⁺)			
Copper (II) (Cu ²⁺)	CuS		
Iron (II) (Fe ²⁺)		Fe(OH) ₂	
Iron (III) (Fe ⁺³)			
Lead (Pb ²⁺)			Pbl ₂
Silver (Ag ⁺)			

Reactions Involved a-Reactions with Ammonium Sulfide $*2AI^{3+}(aq) + 3S^{2-}(aq) + 6H_2O_{(1)} \rightarrow 3H_2S(g) + 2AI(OH)_3(s)$ white $Cu^{2+}(aq) + S^{2-}(aq) \rightarrow CuS(s)$ black $Fe^{+2}(aq) + S^{-2}(aq) \rightarrow FeS(s)$ black * $2Fe^{3+}(aq) + 3S^{2-}(aq) \rightarrow S(s) + 2FeS(s)$ black $Pb^{2+}(aq) + S^{2-}(aq) \rightarrow PbS(s)$ black $2Aq^{+}(aq) + S^{2-}(aq) \rightarrow Ag_{2}S(s)$ black

b- Reactions with Ammonium Carbonate $*2AI^{3+}(aq) + 3CO_3^{2-}(aq) + 3H_2O_{(1)} \rightarrow 3CO_2(g) + 2AI(OH)_3(s)$ white $Cu^{2+}(aq) + CO_3^{2-}(aq) \rightarrow CuCO_3(s)$ blue $*Fe^{2+}(aq) + CO_3^{2-}(aq) + H_2O_{(I)} \rightarrow CO_{2(q)} + Fe(OH)_2(s)$ green * $2Fe^{3+}(aq) + 3CO_3^{2-}(aq) + 3H_2O_{(I)} \rightarrow 3CO_{2(q)} + 2Fe(OH)_3(s)$ red $Pb^{2+}(aq) + CO_3^{2-}(aq) \rightarrow PbCO_3(s)$ white $2Ag+(aq) + CO_3^{2-}(aq) \rightarrow Ag_2CO_3(s)$

white

c- Reactions with Potassium Iodide

*
$$2Cu^{2+}(aq) + 4I^{-}(aq) \rightarrow 2CuI(s) + I_{2(s)}$$

light brown

$$Pb^{2+}(aq) + 2I^{-}(aq) \rightarrow pbI_{2}(s)$$

yellow

$$Ag^{+}(aq) + I^{-}(aq) \rightarrow AgI_{(s)}$$

yellow